Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clin Appl Thromb Hemost ; 28: 10760296211056648, 2022.
Article in English | MEDLINE | ID: covidwho-1685920

ABSTRACT

The progress in the development of various vaccine platforms against SARS-CoV-2 have been rather remarkable owing to advancement in molecular and biologic sciences. Most of the current vaccines and those in development focus on targeting the viral spike proteins by generating antibodies of varying spectrum. These vaccines represent a variety of platforms including whole virus vaccines, viral vector vaccines, nucleic acid vaccines representing RNA, DNA, and their hybrid forms.The therapeutic efficacy of these vaccines varies owing to their pharmacodynamic individualities. COVID-19 variants are capable of inducing different pathologic responses and some of which may be resistant to antibodies generated by current vaccines. The current clinical use of these vaccines has been through emergency use authorization until recently. Moreover, the efficacy and safety of these vaccines have been tested in substantial numbers of individuals but studies in special populations that better reflect the global population are pending results. These specialized populations include young children, immunocompromised patients, pregnant individuals, and other specialized groups. Combination approaches, molecularly modified vaccination approaches, and vaccines conferring longer periods of immunity are being currently being investigated, as well as pharmacovigilance studies.The continual transformation of SARS-CoV-2 and its variants are of concern along with the breakthrough infections. These considerations pose new challenges for the development of vaccination platforms. For this purpose, booster doses, combination vaccine approaches, and other modalities are being discussed. This review provides an updated account of currently available vaccines and those in advanced development with reference to their composition and mechanisms of action.A discussion on the use of vaccines in special populations including immunocompromised patients, pregnant women and other specialized populations are also included.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Development/methods , Adolescent , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Child , Female , Humans , Immunocompromised Host , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/virology
2.
Infect Dis Model ; 7(1): 277-285, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1664974

ABSTRACT

Public health decision makers rely on hospitalization forecasts to inform COVID-19 pandemic planning and resource allocation. Hospitalization forecasts are most relevant when they are accurate, made available quickly, and updated frequently. We rapidly adapted an agent-based model (ABM) to provide weekly 30-day hospitalization forecasts (i.e., demand for intensive care unit [ICU] beds and non-ICU beds) by state and region in North Carolina for public health decision makers. The ABM was based on a synthetic population of North Carolina residents and included movement of agents (i.e., patients) among North Carolina hospitals, nursing homes, and the community. We assigned SARS-CoV-2 infection to agents using county-level compartmental models and determined agents' COVID-19 severity and probability of hospitalization using synthetic population characteristics (e.g., age, comorbidities). We generated weekly 30-day hospitalization forecasts during May-December 2020 and evaluated the impact of major model updates on statewide forecast accuracy under a SARS-CoV-2 effective reproduction number range of 1.0-1.2. Of the 21 forecasts included in the assessment, the average mean absolute percentage error (MAPE) was 7.8% for non-ICU beds and 23.6% for ICU beds. Among the major model updates, integration of near-real-time hospital occupancy data into the model had the largest impact on improving forecast accuracy, reducing the average MAPE for non-ICU beds from 6.6% to 3.9% and for ICU beds from 33.4% to 6.5%. Our results suggest that future pandemic hospitalization forecasting efforts should prioritize early inclusion of hospital occupancy data to maximize accuracy.

3.
Clin Appl Thromb Hemost ; 27: 10760296211066942, 2021.
Article in English | MEDLINE | ID: covidwho-1574701

ABSTRACT

INTRODUCTION: We conducted a cross-sectional survey as a part of an educational program in collaboration with the Global Thrombosis Forum (GTF), an affiliate of North American Thrombosis Forum (NATF), and Loyola University about public perceptions of COVID-19 and COVID-19 vaccinations in the US. In this study, we are reporting the results of this survey. MATERIALS AND METHODS: The survey, in the form of a questionnaire, has been developed by GTF and faculty members. A prepared questionnaire was sent to the members of the Georgia and Illinois communities. RESULTS: In our current study, the COVID-19 vaccine willingness rate was 94.5% and vaccination rate was 90.9%. In multivariate analysis believing to have enough information about the safety and efficacy of COVID-19 vaccines (OR: 3.730, 95% CI: 1.199-11.603, p: 0.023) and gender (OR: 0.123, 95% CI: 0.016-0.967, p: 0.046) were significant predictors for vaccine willingness. Previous COVID-19 infection (OR: 0.215, 95% CI: 0.061-0.758, p: 0.017), moderate and severe effects of COVID-19 pandemic on participant's life (OR: 4.631, 95% CI 1.681-12.760, p: 0.003) and believing to have enough information about the safety and efficacy of COVID-19 vaccines (OR: 4.119, 95% CI: 1.508-11.253, p: 0.006) were significant predictors for final vaccination status. CONCLUSION: In conclusion, currently vaccination remains one of the most effective tools in the fight against the COVID-19 pandemic. The vaccine hesitancy is a complex phenomenon that is driven by individuals' perceptions of safety, and efficiency of the vaccines. We must continue to educate the public and communities that vaccines are safe, that they are effective and that they are still required even after a COVID-19 infection.


Subject(s)
COVID-19 Vaccines/therapeutic use , SARS-CoV-2/metabolism , Vaccination/methods , Adolescent , Adult , COVID-19 Vaccines/pharmacology , Cross-Sectional Studies , Female , Humans , Male , Perception , Pilot Projects , Surveys and Questionnaires , Young Adult
4.
Thromb Haemost ; 121(8): 992-1007, 2021 08.
Article in English | MEDLINE | ID: covidwho-1320246

ABSTRACT

BACKGROUND: One year after the declaration of the coronavirus disease 2019 (COVID-19) pandemic by the World Health Organization (WHO) and despite the implementation of mandatory physical barriers and social distancing, humanity remains challenged by a long-lasting and devastating public health crisis. MANAGEMENT: Non-pharmacological interventions (NPIs) are efficient mitigation strategies. The success of these NPIs is dependent on the approval and commitment of the population. The launch of a mass vaccination program in many countries in late December 2020 with mRNA vaccines, adenovirus-based vaccines, and inactivated virus vaccines has generated hope for the end of the pandemic. CURRENT ISSUES: The continuous appearance of new pathogenic viral strains and the ability of vaccines to prevent infection and transmission raise important concerns as we try to achieve community immunity against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and its variants. The need of a second and even third generation of vaccines has already been acknowledged by the WHO and governments. PERSPECTIVES: There is a critical and urgent need for a balanced and integrated strategy for the management of the COVID-19 outbreaks organized on three axes: (1) Prevention of the SARS-CoV-2 infection, (2) Detection and early diagnosis of patients at risk of disease worsening, and (3) Anticipation of medical care (PDA). CONCLUSION: The "PDA strategy" integrated into state policy for the support and expansion of health systems and introduction of digital organizations (i.e., telemedicine, e-Health, artificial intelligence, and machine-learning technology) is of major importance for the preservation of citizens' health and life world-wide.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Public Health , COVID-19/diagnosis , COVID-19 Testing/methods , COVID-19 Vaccines/therapeutic use , Disease Management , Humans , Immunization Programs/methods , Pandemics/prevention & control , Public Health/methods , Risk Assessment , SARS-CoV-2/isolation & purification
5.
Clin Appl Thromb Hemost ; 27: 10760296211021498, 2021.
Article in English | MEDLINE | ID: covidwho-1249538

ABSTRACT

Today the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a global health problem. After more than a year with the pandemic, although our knowledge has progressed on COVID-19, there are still many unknowns in virological, pathophysiological and immunological aspects. It is obvious that the most efficient solution to end this pandemic are safe and efficient vaccines. This manuscript summarizes the pathophysiological and thrombotic features of COVID-19 and the safety and efficacy of currently approved COVID-19 vaccines with an aim to clarify the recent concerns of thromboembolic events after COVID-19 vaccination. The influx of newer information is rapid, requiring periodic updates and objective assessment of the data on the pathogenesis of COVID-19 variants and the safety and efficacy of currently available vaccines.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , SARS-CoV-2 , Thrombosis/etiology , Ad26COVS1 , Autoantibodies/biosynthesis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , ChAdOx1 nCoV-19 , Clinical Trials as Topic , Disseminated Intravascular Coagulation/epidemiology , Disseminated Intravascular Coagulation/etiology , Drug Approval , Female , Genetic Vectors , Glycosaminoglycans/immunology , Humans , Male , Models, Cardiovascular , Pandemics/prevention & control , Platelet Factor 4/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Safety , Sinus Thrombosis, Intracranial/epidemiology , Sinus Thrombosis, Intracranial/etiology , Thrombosis/epidemiology , Thrombosis/physiopathology , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
6.
Home Health Care Management & Practice ; : 1084822320980415, 2020.
Article in English | Sage | ID: covidwho-971761

ABSTRACT

Home health and home care (HH ready access to affordable PPE and disinfectants;and guidance, tools, and training tailored for the industry. HH&HC should be incorporated more fully into comprehensive healthcare and public health pandemic planning.

7.
Clin Appl Thromb Hemost ; 26: 1076029620936776, 2020.
Article in English | MEDLINE | ID: covidwho-657787

ABSTRACT

COVID-19 has proven to be particularly challenging given the complex pathogenesis of SARS-CoV-2. Early data have demonstrated how the host response to this novel coronavirus leads to the proliferation of pro-inflammatory cytokines, massive endothelial damage, and generalized vascular manifestations. While SARS-CoV-2 primarily targets the upper and lower respiratory tract, other organ systems are also affected. SARS-CoV-2 relies on 2 host cell receptors for successful attachment: angiotensin-converting enzyme 2 and transmembrane protease serine 2. Clinicopathologic reports have demonstrated associations between severe COVID-19 and viral coagulopathy, resulting in pulmonary embolism; venous, arterial, and microvascular thrombosis; lung endothelial injury; and associated thrombotic complications leading to acute respiratory distress syndrome. Viral coagulopathy is not novel given similar observations with SARS classic, including the consumption of platelets, generation of thrombin, and increased fibrin degradation product exhibiting overt disseminated intravascular coagulation-like syndrome. The specific mechanism(s) behind the thrombotic complications in COVID-19 patients has yet to be fully understood. Parenteral anticoagulants, such as heparin and low-molecular-weights heparins, are widely used in the management of COVID-19 patients. Beyond the primary (anticoagulant) effects of these agents, they may exhibit antiviral, anti-inflammatory, and cytoprotective effects. Direct oral anticoagulants and antiplatelet agents are also useful in the management of these patients. Tissue plasminogen activator and other fibrinolytic modalities may also be helpful in the overall management. Catheter-directed thrombolysis can be used in patients developing pulmonary embolism. Further investigations are required to understand the molecular and cellular mechanisms involved in the pathogenesis of COVID-19-associated thrombotic complications.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Thrombophilia/etiology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anticoagulants/therapeutic use , Arterial Occlusive Diseases/etiology , Arterial Occlusive Diseases/physiopathology , Arterial Occlusive Diseases/virology , COVID-19 , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Catheterization, Swan-Ganz , Combined Modality Therapy , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Fibrinolytic Agents/therapeutic use , Humans , Hyperbaric Oxygenation , Platelet Aggregation Inhibitors/therapeutic use , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pulmonary Embolism/etiology , Pulmonary Embolism/therapy , Pulmonary Embolism/virology , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Thrombolytic Therapy/instrumentation , Thrombolytic Therapy/methods , Thrombophilia/physiopathology , Thrombophilia/therapy , Venous Thrombosis/etiology , Venous Thrombosis/physiopathology , Venous Thrombosis/virology , Virus Internalization/drug effects , COVID-19 Drug Treatment
8.
Clin Appl Thromb Hemost ; 26: 1076029620936350, 2020.
Article in English | MEDLINE | ID: covidwho-639157

ABSTRACT

This practical guidance, endorsed by the Brazilian Society of Thrombosis and Hemostasis and The Brazilian Society of Angiology and Vascular Surgery, the International Union of Angiology and the European Venous Forum, aims to provide physicians with clear guidance, based on current best evidence-based data, on clinical strategies to manage antithrombotic strategies in patients with coronavirus disease 2019.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Pandemics , Pneumonia, Viral/complications , Practice Guidelines as Topic , Thrombophilia/therapy , Thrombosis/prevention & control , Anticoagulants/therapeutic use , Biomarkers , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Disease Management , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Evidence-Based Medicine , Fibrin Fibrinogen Degradation Products/analysis , Humans , Lung Diseases/etiology , Lung Diseases/prevention & control , Pneumonia, Viral/blood , Pulmonary Veins , SARS-CoV-2 , Thrombophilia/etiology , Thrombophlebitis/etiology , Thrombophlebitis/prevention & control , Thrombosis/etiology , Venous Thromboembolism/etiology , Venous Thromboembolism/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL